
2

Assigning types to terms

The topic of this book is one of the simplest current type-theories. It was called TA
in the Introduction but in fact it comes in two forms, TAC for combinatory logic
and TA2 for A-calculus. Since most readers probably know A-calculus better than
combinatory logic, only TAx will be described here. (The reader who wishes to see
an outline of TAc can find one in HS 86 Ch.14; most of its properties are parallel
to those of TA2.)

The present chapter consists of a definition and description of TA2. It is close to
the treatment in HS 86 Ch. 15 but differs in some technical details.

2A The system TAt

2A1 Definition (Types) An infinite sequence of type-variables is assumed to be given,
distinct from the term-variables. Types are linguistic expressions defined thus:

(i) each type-variable is a type (called an atom);
(ii) if o and -r are types then (o->r) is a type (called a composite type).

2A1.1 Notation Type-variables are denoted by "a", "b", "c", "d", "e", "f", "g", with
or without number-subscripts, and distinct letters denote distinct variables unless
otherwise stated.

Arbitrary types are denoted by lower-case Greek letters except "A".
Parentheses will often (but not always) be omitted from types, and the reader

should restore omitted ones in such a way that, for example,

P->a-t = (P-(Q->r)).
This restoration rule is called association to the right.'

2A1.2 Informal interpretation To interpret types we think of each type-variable as
a set and a--+T as a set of functions from o into T. The precise nature of this set
of functions (all functions, all functions definable in some given system, etc.) will
depend on the particular interpretation we may have in mind.

It is the opposite of the rule for terms! The reason originates in the fact that terms follow the common
notation convention in which an operator's input is written on the right, but in a type o-t the type
of the input is on the left of that of the output.

12

2A The system TAA 13

2A2 Definition The total number of occurrences of type-variables in a type T will
be called ITI or the length of T; more precisely, define

Ial 1, IP-*al IPI + lal.

The number of distinct type-variables occurring in T will be called

IITII

and the set of all these variables will be called

Vars(T).

2A2.1 Example If T = (a-+b-*c)--+(a-*b)--+a-*c, then

ITI = 7, IITII = 3, Vars(T) = {a,b,c}.

The structure of an arbitrary type is analysed in detail in 9D-E. The lemmas there
will be used in some later chapters but not in this one.

2A3 Discussion (The Church and Curry approaches) In current use there are two
main ways of introducing types into A-calculus, one attributable to Alonzo Church
and the other to Haskell Curry.

The former goes back to a type-system introduced in Church 1940. In it, the
definition of "A-term" is restricted by giving each term a unique type as part of
its structure and saying that an application PQ is only defined when P has a
function-type a--+T and Q the appropriate argument-type a.1

The effect of Church's restriction can be seen on which is a well-formed
term in type-free A-calculus but represents the abstract concept of self-application, a
concept whose meaningfulness may well be questioned. Self-application was involved
in most of the paradoxes that were discovered in mathematics in the early 1900's,
and Bertrand Russell devised the first of all type-theories specifically as a language
in which these paradoxes could not be expressed. In Church's typed A-calculus each
variable has a unique type, so if x has a function-type a-->T it cannot also have type
a, and so the application xx cannot be defined as a typed term. Hence also Ax xx
cannot be a typed term.

Curry took a different approach. He pointed out that if we wish to ask questions
about the meaningfulness of then we need a language in which these questions
can be expressed. And Church's type-theory by itself is not adequate for this, because
we have just seen that is excluded from it. Curry proposed a language which
would include all the type-free A-terms, and a type-theory which would contain rules
assigning types to some of these terms but not to others. The term would not
be given a type by these rules, but would still remain in the system and hence be
discussable. (Curry and Feys 1958 §0B, p.5.)

Along with this change Curry proposed another, which is best understood by
looking at the identity-combinator as an example.

In Church's type-theory there is no term Ax-x. Instead, for each type o there is

For a definition of typed A-term and a few examples see HS 86 §13A; for another version, with
motivation and more details, see Barendregt 1992 §3.2.

14 2 Assigning types to terms

a variable x° with type o and a term with type Informally, this term
denotes the identity function on whatever set S may be denoted by a. Call this
function Is; the only objects it accepts as inputs are members of S, and Is(x) = x for
all x E S. Thus Church's theory has an infinite number of identity functions, one for
each set S. This agrees with the view of functions taken by most mathematicians:
each function is seen as a set of ordered pairs with a domain and range built into
its definition, and the identity functions Is and IT on two distinct sets S and T are
viewed as different functions.

But this view is not entirely satisfying; an alternative and perhaps more natural
view is to see all the separate identity-functions Is, IT, etc. as special cases of one
intuitive concept, the operation of doing nothing. If we admit that such a concept
exists, even though only in an imprecise sense, then a type-theory that tries to make
it precise by splitting it into an infinite number of different special cases at the
beginning will seem at the very best inefficient.

Curry's aim was a type-theory in which the identity-concept would be expressed
by just one term Ax-x, to which an infinite number of types would be assigned
by suitable formal rules. Types would contain variables, and if a term M received
a type T it would also receive all substitution-instances of T. This kind of theory
will be called here a type-assignment theory or a Curry-style type-theory. (It is the
ancestor of polymorphic type-theories.) In contrast, a theory in which each term has
a unique built-in type will be called a typed-term theory or a Church-style theory.'

TA2 will be a type-assignment theory.

2A4 Definition A type-assignment is any expression

M : T

where M is a A-term and T is a type; we call M its subject and T its predicate.

("M: T" should be read informally as "assign to M the type T" or "M has type T"
or "M denotes a member of whatever set T denotes".)

2A5 Definition A type-context r is any finite, perhaps empty, set of type-assignments

F = lxl:pi, ..., xm:pm}

whose subjects are term-variables and which is monovalent or consistent in the sense
that no variable is the subject of more than one assignment. For any such IF define

Subjects(F) = {xi,...,xm}.

i Curry's and Church's lines of thought were not really as distinct as the above seems to imply. In
particular Church did not ignore the possibility that a single identity-concept might be formalizable
instead of a multitude of particular identity-functions. Indeed his first systems of A-calculus in the
1930's were part of an attempt to formalize exactly this single-identity view of functions in a type-free
theory, and one of the best available expositions of this view is in the introduction to his book Church
1941. Only after his attempt to do this in an extremely general setting proved inconsistent did Church
turn to type-theory and a more restricted approach to functions. Also Curry's type-theories began
their development in some of his earliest work and were not simply a response to Church's; see Curry
1934.

2A The system TA, 15

2A5.1 Notation The result of removing from r the assignment whose subject is x (if
r has one) is called

(If x 0 Subjects(F) we define F - x = F.) The result of removing from F all
assignments xi:pi with xi 0 FV(M) (where M is a given term) is called

FPM

or "r restricted to M". And F is called an "M-context" (for a given M) if

Subjects(F) = FV(M).

2A5.2 Note A type-context F is a set, not a sequence. Hence it does not change
when its members are permuted or repeated. To implement TA2 as a practical
system we would have to represent F by an expression in some language and
include rewrite-rules to permute F's members and make and remove repetitions.
Such rules would obscure the main themes of this book so they have been avoided
here by simply assuming that contexts are sets)

2A6 Definition We say Ft is consistent with F2 if Fl UI72 is consistent; and Ft,..., Fn
are mutually consistent if their union is consistent.

2A7 Definition (TA2-formulae) For any F, M and T the triple (F, M, T) is called a
TAx formula and is written as

F --* M :'r

(or just --+ M:T when F is empty). We shall call M the subject of this formula and T
its predicate (despite the fact that in general it contains other subjects and predicates
too, namely those of the assignments in F).

2A7.1 Notation The following abbreviations will often be used:

x1:Ul,...,xn:Qn F- M:T for {x1:61,...,xn:6n} I- M:T,

F, Y1:ai,...,Yn:on I- M:T for r U {y1:vt,...,Yn:an} I- M:T.

2A8 Definition (The system TAB,) TA2 has an infinite set of axioms and two
deduction-rules (called (-'.E) or --*-elimination and (-*I) or -'.-introduction), as
follows.

Axioms of TA2: for every term-variable x and every type r, TA,1 has an axiom

x:T '--> x:T.

Type-contexts are also called environments in the literature. They play a different role from the sets
called bases in HS 86 Chs.14-15: there a basis was a set of axioms for a theory, whereas here a context
will be used as a set of assumptions for a particular deduction in a theory.

16 2 Assigning types to terms

Deduction-rules of TAx:

(-E)
171 H P :(o--->T) r2 Q

U r2 H (PQ) : T,
[if 171 U r2 is consistent]

r1

F H P :-r
F-x F-+ (Ax.P):(r->r).

[if r is consistent with x:oj

A TAx-deduction A is a tree of TA2-formulae, those at the tops of branches being
axioms and those below being deduced from those immediately above them by a
rule. (A detailed definition of such deductions is given in 9C1.) The bottom formula
in A is called its conclusion; if it is

r --> M :T

we call A a deduction of r H M:T or a deduction of M:T from r, and say that
r f-a M:T is TAx-deductible. In the special case r = 0, A may be called a proof of
the assignment M:T.

2A8.1 Note (Rule (-+I)) The condition in (-*1) that r be consistent with x:a means
that either r contains x:a or r contains no assignment at all whose subject is x. In
the first case the rule is said to discharge or cancel x from F. In the second case it is
said to discharge x vacuously.

In these two cases the rule takes two slightly different forms which may be
displayed as follows (using "r1" below to correspond to "F - x" above).

(*l)main
r1,x:a H P:T

rl (Ax.P):(Q->T),

F, '-+ (Ax.P):(a-*T).

[ifx Subjects(r1)]

[ifx 0 Subjects(rl)]

2A8.2 Example Let B - as in the list in 1A10.1; the following is a
deduction of

-+ B:

(In it, "r" will denote the set {x:a-*b, y: c--+a, z:c}.)

y:c-+a F-+ y:c-+a z:c ---> z:c

x:a-+b H x:a->b y:c-+a, z:c i-+ yz:a

F (x(yz)):b

r-z -+ (Az-x(yz)):c-->b

r - z - y H (Ayz -x(yz)):(c-+a)

(->E)

(-+E)

ti (Axyz-x(yz)):(a->b)->(c-*a)-,c-->b

2A The system TA2

2A8.3 Example Let I - Ax-x; the following is a deduction of

H I : a-+a.

x:a F--+ x:a
i(-'I)ma n

i--> a-+a

2A8.4 Example Let K = the following is a deduction of

--+ K:a- b-+a.

x:a --+ x:a
(+I)vac

x:a --+

(-+I)main
-4

2A8.5 Example The following is a deduction of

F--+ II: a-+a.

x:a--+a x:a-+a x:a '--+ x:a (-*1)

(-E)
H

17

2A8.6 Remark (Self-application) The above example gave a type to a term involving
self-application, namely II. This was done by giving a different type to each of the
two occurrences of I, and to do this we had to give two different types to the one
variable x; but there was no inconsistency problem when (-+E) was applied because
the two applications of (--+I) above (-+E) removed x from the contexts on the left
of " -4 ". Similarly it is possible to give types to several other self-applications in
TA2, for example KK and BB.

This may seem surprising, in view of the claim in 2A3 that the original aim
of a type-theory was to avoid self-application. But in fact the "dangerous" self-
application to be avoided is not any one simple particular case like II, but the overall
general concept of self-application as represented by the term Ax.xx. And 2x.xx
does not receive a type in TAz.

To see this, suppose there were a TA2-deduction of

H

for some r. Then its last step would have to be an application of (-+I) to a deduction
of

x:p I--+ xx:a
for some p and a such that i - p-+6; and the last step in this deduction would
have to be an application of (-+E) to two deductions of

x : al-+6 i--+ x : 61x : 61 H x : 61
for some 61. But 61-+a # at so the consistency condition in (-+E) would be violated
by these deductions.

18 2 Assigning types to terms

Thus the consistency condition in (-->E) prevents from having a type. This
is in fact its main purpose.'

2A8.7 Exercise* Deduce the following in TA2, where B' - C =
S - and W - as in 1A10.1.

(i) --* B': (a-+b)-+(b-->c)-->a-*c,
(ii) --> C: (a-->b-->c)-+b-+a-->c,

(iii) -> S: (a->b-*c)- *(a-*b)--+a-->c,
(iv) H W: (a->a-*b)-a-b.

2A8.8 Exercise* Deduce the following in TA2, where

P - (Avxyz-v(Y(vxz)))I, Q ,.xyz- 1(Y(Ixz));

(i) --> P : (a--+b)-*(b-+a-.b)--.a-.a-->b;
(ii) H Q: (a-*b)-+(b-+c)->a--*c.

2A8.9 Note (Comparison with HS 86) The format of TAx is what is known as the
"Natural Deduction" style and was originated by Gerhard Gentzen in his thesis
Gentzen 1935. The system called "TA2" in HS 86 §15B is another variant of the
same style; its main differences from the above system TA1 are as follows.

(i) In HS 86 the discharging of assumptions by rule (--+I) was shown by enclosing
the assumption in brackets at the top of the deduction-tree. But here the set of
undischarged assumptions at each stage of the deduction is displayed on the left
of the " -4 " symbol and when rule (-*I) is used this set is simply reduced. This
notation is perhaps more explicit than that in HS 86 and is in common use in recent
literature. In both notations deductions have the same tree-structure.

(ii) The version in HS 86 included an a-rule that is not in the present version. This
was to ensure that the set of provable formulae would be closed under a-conversion
even when the basis of axioms was not. But there are no axioms here in the sense of
HS 86 so a-closure will turn out to be provable without adding an a-rule; see 2B6.

2A9 Definition Let r be a type-context. Iff there is a TA2-deduction of a formula
r' '-- M:T for some F' c F we shall say

I' F-,1 M : T.

In the special case r = 0 we shall say M has type T in TA2, ors is a type of M
in TAx, or

F-2 M: T.

The phrase "in TA2" may be omitted when no confusion is likely.

2A9.1 Lemma (Weakening) I' PA M:T, r+ ? I' . 17' PA M:T.

There is at least one interesting type-theory in which this consistency condition is relaxed, the theory
of intersection-types that originated in Coppo and Dezani 1978 and Salle 1978. In this theory xx
receives a type and types play a significantly more complex role than in TA2, see for example the
comment in Hindley 1992 §1.1.

Proof Trivial from 2A9.

2A The system TA2 19

0

2A9.2 Warning Do not confuse " H " with "F-". The former is part of the language
of TA2 and serves merely to separate two parts of a formula. But "I-A" is part of
the meta-language in which TA,2 is described, and asserts the existence of a TA,2-
deduction; it is the traditional deducibility symbol.' In particular do not confuse
the two statements

(a) the. formula F H M: r is deducible,
(b) F F-2 M:r.

Statement (b) has the weakening property, as we have just seen in 2A9.1. But
(a) does not; the rules of TA2 have been formulated so that if (a) holds then the
subjects of r coincide exactly with the free variables of M, and we cannot modify
a deduction of F F-+ M:T to make a deduction of r+ '--> M:T if r+ ? F.2

The next two lemmas express the above comments more formally.

2A10 Lemma If F H M:2 is deducible in TA2 then Subjects (F) = FV(M).

Proof By an easy induction on lengths of deductions.

2A11 Lemma (i) F I-2 M:r iff Subjects(F) 2 FV(M) and there exists a TA,2-
deduction of the formula F r M --* M:2.

(ii) (3F)(F I-A M:'t) (3F){F is an M-context and F I-2 M: i}.
(iii) For closed terms M,

(317)(F F-,2 M: T) : F-Z M: T.

Proof By 2A9 and 2A10. (The definition of r (M is in 2A5.1.)

2A12 Historical Comment Although this book focuses on A-calculus, type-assignment
in fact began in its sister-theory, combinatory logic. The first systems appeared in
Curry 1934 and were developed further in Curry and Feys 1958 Chs. 8-10, Seldin
1968 and Curry et al. 1972 Ch. 14, though in his earlier work Curry was aiming at
building type-theories with the greatest possible generality and strength and simple
type-assignment formed only a small part of each of these. However, when he found
his strongest system inconsistent in 1954 he turned to the study of weaker ones
and gradually realized that their -*-fragment formed a very neat core system that
was worth studying on its own and stood a good chance of having some practical
value.

This system was essentially a combinatory-logic analogue of TA2: Curry called
it "modified basic functionality" though later in HS86 it was called "TAc". Its basic
properties first appeared in Curry and Feys 1958 §§8C and 9A-F, though even then
those authors' main interest was in a slightly stronger system obtained by adding to

1 Many works use I-" where this book uses " H ", and introduce no special notation for deducibility.
2 Many other versions of Natural Deduction in the literature do not have this restriction but I believe

its use slightly simplifies the proofs of some properties that depend on analysing the structure of a
deduction.

20 2 Assigning types to terms

TAc an equality-invariance rule (see Chapter 4 below). The first papers to feature
TAc exclusively were Curry 1969 and Hindley 1969.

As for TAx itself, its first appearance was in Curry and Feys 1958 §9F1 under the
name "F1(2)T", though none of its properties were stated at that date other than
a theorem relating it to TAc. Its properties as an independent system were not
described until ten years later in the theses Morris 1968 and Seldin 1968. Seldin's
results on TA2 appeared in Curry et al. 1972 §14D, but Morris' thesis was never pub-
lished. The next study devoted to TA1 was another unpublished thesis, Ben-Yelles
1979; some of its material will be the subject of Chapter 8 below.

For subsequent work on TA,1 see the references in Chapters 3-9 below.

2B The subject-construction theorem

Deductions in TAx have one very important property that is not shared by de-
ductions in many more complex type-theories; the tree-structure of a deduction of
F H M:T follows the tree-structure of M exactly. To make this correspondence
precise we really need the detailed definition of construction-tree of a term given in
9A4 and that of a deduction given in 9C1; but the following example gives a very
good idea of what it means.

2B1 Example Let B A deduction of a type-assignment for B was
shown in 2A8.2. If all but the subject is erased from each formula in this deduction
the result is the tree shown in Fig. 2Bla. This is the same as the construction-tree of
B (with certain details called position-labels omitted, for these see the full definition
of construction-tree in 9A4).

x

yz
x(yz)

),z.x(yz)

T
?,yz.x(yz)

kxyz.x(yz)

Fig. 2B l a.

The following theorem describes the deductions-to-terms correspondence formally.

2B2 Subject-construction Theorem (Seldin 1968 §3D Thm. 1, Curry et al. 1972 §14D
Thm. 1.) Let A be a TA2-deduction of a formula 1 --> M:T.

(i) If we remove from each formula in A everything except its subject, A changes to
a tree of terms which is exactly the construction-tree for M.

y z

2B The subject-construction theorem 21

(ii) If M is an atom, say M x, then F = {x: T} and A contains only one formula,
namely the axiom

x:T --+ X: T.

(iii) If M - PQ the last step in A must be an application of (-+E) to two formulae
with form

r rP --+ P:a-+T, r [Q F-. Q: a,

for some a.
(iv) If M = Ax-P then T must have form p--+a; further, if x E FV(P) the last step

in A must be an application of (->I)main to

F,x:p F-+ P:a,

and if x FV(P) the last step in A must be an application

r F--+ P: a.

of (+I)vac to

Proof Induction on IMI. Parts (i)-(iii) follow immediately from the full definition
of deduction in 9C1. For (iv): if M = then by 2A8.1 the last step in A must
have one of the forms

F,x:p --+ P: or

r i--* Ax.P:p-+a
r --+ P : a

F i--i

and by 2A10 (->I) main is used when x E FV(P) and (-+I)vac is used otherwise. Hence
result.

2B2.1 Warning (Deductions are not unique) Given M, let A be a deduction of
F M:T. By the subject-construction theorem the structure of M determines both
the tree-structure of A and the terms at all the nodes in A. But this does not mean
that the whole of A is completely determined by its conclusion, because there is
some freedom of choice of the types assigned to terms at non-bottom nodes in A.
For example, let F = 0 and

M (.1xy-y)(Az-z), T =- a-+a

and consider the deduction in Fig. 2B2.1a; the type a in that figure can be arbitrary.

y:a h-+ y:a

(axy-y):a-+a z:a '-+ z:a
(-+1)

Fig. 2B2.1 a.

22 2 Assigning types to terms

However, if M is a normal form or a AI-term this freedom will disappear and
A will be completely determined by M, as we shall see in the next lemma and the
exercise below it.

2B3 Lemma (Uniqueness of deductions for of s) (Ben-Yelles 1979 Cor. 3.2.) Let
M be a /3-nf and A a TAB,-deduction of I' F--> M:T. Then

(i) every type in A has an occurrence in T or in a type in F,
(ii) 0 is unique, i.e. if A' is also a deduction of r H M:T then A' - A.

Proof' Use induction on IMI. The cases M = y and M - are easy. Since M is
a /3-nf, by 1B10 the only other possible case is

M yPl ... Pn

In this case any deduction A of F H M:T must contain an axiom

Y : (PI -P.-T) Y : (P1-'...-'Pn-T),

as well as n deductions 01, ... , On giving

r1 - P1:P1, ... >Fn - Pn:Pn

followed by n applications of (-FE) to deduce

T.{Y : (P1- ... -->Pn-T)} U F1 U ... U Tn --> (YP1 ... Pn)

And F must be

{Y : (P1-... ->P.-'T)} U 171 U ... U Fn-

To prove (i): by part (i) of the induction hypothesis every type in a Ai occurs in
p; or F, and hence in F; also the type of y occurs in F. Hence (i) holds.

To prove (ii): the argument above shows that A' must use the same rules at the
same positions as in A. And the type assigned to y in A' is determined by F and
the assumption that type-contexts are consistent; then the types of P1,...,Pn are
determined by the type of y.

2B3.1 Note (Subformula property) Part (i) of 2B3 corresponds to what is usually
called in logic the subformula property; this says that in a Natural Deduction system
every formula in an irreducible deduction occurs in either the conclusion or an
undischarged assumption. (The correspondence between types and propositional
logic will be fully described in Chapter 6.)

In contrast the TAI-deduction in Fig. 2B2.1a contains a type a that does not
occur in an undischarged assumption or the conclusion.

2B3.2 Exercise* (Uniqueness of deductions for AI-terms) Show that if A is a TA2-
deduction of F F--. M:T and M is a 21-term, then A is unique; i.e. if A' is also a
TA1-deduction of F F-* M:T then A' _ A. (Hint (Thierry Coquand): use 2B3 and
some facts from 2C and 2D below, and the leftmost-reduction theorem (1B9), plus
some thought on the form that a leftmost reduction must have; see the Answers for
details.)

2B The subject-construction theorem 23

The following three lemmas will be needed in the next section. The first is a
special case of the third but is stated separately because it is needed in the proof of
the third.

2B4 First Substitution Lemma for Deductions Let F - M:T and let [y/x]F be
the result of substituting y for a term-variable x in F. if either of the following holds:

(i) y Subjects(F),
(ii) y and x receive the same type in F,

then

[Y/x]r H2 ([Ylx]M) : T.

Proof First, in both cases (i) and (ii) [y/x]F satisfies the consistency condition for
contexts. Next, by 2A 11 there is a deduction of

F- F+ M : T

for some F- s F with Subjects (F-) = FV(M). Then [y/x]F- is consistent. An
induction on IMI then shows that

[Y/x]F l-z ([Ylx]M) : T.

Then the weakening lemma (2A9.1) gives the result.

2B5 a-Invariance Lemma If F -2 P:T and P -« Q then F I-i Q:T.

Proof [Depends on Section 9C] It is enough to prove the result for one change of
bound variable, say the replacement of a component of P by with
y ¢ FV(M). If P the result follows using 2B4. If is a proper part of
P, use 9C5 (a replacement lemma).

2B6 Second Substitution Lemma for Deductions Let F1 be consistent with F2 and let

F1,x:o i-,, M:T, F2 I-,t N:a

Then

F1 U F2 I-,, [N/x]M : T.

Proof Assume x E FV(M). (If not, the result holds trivially.) By 2B5 we can assume
no variable bound in M is free in xN. In this case [N/x]M is simply the result of
replacing each free x in M by N with no accompanying changes of bound variables.
And by 2A11 we can assume that

Subjects(Fi) U {x} = FV(M),
Subjects(F2) = FV(N).

The result is then proved by a straightforward induction on IMI.

By the way, y might be bound in M. To deal with the case that M = Ay P, it is necessary to use the
induction hypothesis twice and use the fact that I [z/y]PI = IPI.

24 2 Assigning types to terms

2C Subject reduction and expansion

Besides avoiding logical paradoxes another main purpose of type-theories is to avoid
errors of mis-matching in programming. If a term P has a type T we can think
of P as being in some sense "safe". If P represents a stage in some computation
which continues by fn-reducing P, we would like to know that all later stages in
the computation are just as safe as P. The following theorem guarantees this.

2C1 Subject-reduction Theorem (Morris 1968 §4D Thm. 1, Seldin 1968 §3D Thm. 2.)
If F -1 P :T and P >f, Q then

F [-A Q: T.

Proof [Depends on lemmas in 9C] First, by 2A11 there exists a deduction A of
F- t--* P:T for some f- s F with Subjects (f-) = FV(P). By 1C5.1, FV(P)
FV(Q). Hence by 9C5 it is enough to prove the theorem when P is a /3- or ?I-redex
and Q is its contractum.

Case 1: P - (AxM)N, Q = [N/x]M. If x r= FV(M) then by the subject-construction
theorem (2B2) the lower steps of A must have form

f1,x:Q H M:T
(->I)main

f1 H (2x'M):(o->T) f2 -- N:a
(-.E)

171U1-2 '-p

where F1 U F2 = f-. Then 2B6 applied to the deductions for M and N gives

f1Uf2F[N/x]M:T

If x V FV(M) the proof is similar.

Case 2: P = Ax-Mx, Q = M, x FV(M). Then r = p-+Q for some p and o, and
by 2B2 the last steps in A must have form

f- i-* M:p- *a x:p F-. x:p (-E)
F-, x:p --* Mx:Q

(->I)main
f- -->

Thus A contains a deduction off - H W r as required.

The subject-reduction theorem has a partial analogue for expansion as follows.

2C2 Subject-expansion Theorem If f 1-2 Q:T and P >p Q by non-duplicating and
non-cancelling contractions, then

f 1--2 P :T:

Proof Exercise. This theorem is a special case of Curry et al. 1972 p.315, §14D
Thm. 3 (= Seldin 1968 §3D Thm. 3).

2C Subject reduction and expansion

2C2.1 Corollary If P is a closed BCIA-term and P .p Q then

FI-2P:i Ft-2Q:i

25

Proof For use 1D6 and 2C2; for "=" use 2C1.

The subject-expansion theorem can be extended to some cancelling contractions
under suitable restrictions. (For example see Curry et at. 1972 §14D Thm. 3 or
Hindley 1989 Thm. 3.3.) But it cannot be extended to arbitrary contractions, as the
following examples show.

2C2.2 Example P >1# Q by a cancelling contraction and Q has a type but P has no
type:

P = ()uv-v)(ilx-xx), Q - 2v-v.

We have I-x Q: a-+a by 2A8.3. But no TA2-deduction has a conclusion with
form H-+ P : z. Because such a deduction would have to contain a deduction
of --+ a for some a and this is impossible by 2A8.6.

2C2.3 Example P tip Q by a duplicating contraction and Q has a type but P has
none:

P = (Ax-xx)I, Q = 11.

We have I-A Q: a--+a by 2A8.5. But P has no type because has none (by 2A8.6).

2C2.4 Example P > p Q by a cancellation, P and Q both have types, but Q has more
types than P :

P - 2xyz-(Au-y)(xz), Q = 1xyz'y.

It is easy to prove that

12 P: (c-*d)->b-*c-+b, I-A Q: a->b-*c-*b;

and an application of the principal-type algorithm (3E1) will show that the types
possessed by P are exactly the substitution-instances of the one shown above, and
similarly for Q. Hence P cannot have the type displayed for Q. (Roughly speaking,
the underlying reason is that x has a function position in P and must therefore be
assumed to have a function-type c--+d; since x does not occur at all in Q the type
of Q has no such limitation.)

2C2.5 Example P >1# Q by a duplication, P and Q both have types, but Q has more
types than P :

P =_ Q

By 2A8.8 we have

I-A P: (a--+b) --- (b--+a--+b)--+a-+a-+b,

I-A Q: (a-+b)-*(b--.c)-+a-->c;

26 2 Assigning types to terms

and an application of the principal-type algorithm (3E1) will show that P cannot
have the type displayed for Q. (The underlying reason is that the two v's in P must
receive the same type whereas the two I's in Q are not so limited.)

2C2.6 Example P rl-contracts to Q, P and Q both have types, but Q has more types
than P:

P - 2xy-xy, Q = AY.Y

It is easy to see that

F-2 P : (a-*b)-*a-*b, F-2 Q : a--+a,

and that a TA2-deduction of
position in P).

H P : a-*a is impossible (because x is in a function

2C3 Definition (Types(M)) If M is closed, define Types(M) to be the set of all T
such that F-A M: T.

We shall see in Chapter 3 that if Types(M) is not empty its members are exactly
the substitution-instances of one type, the principal type of M; hence Types(M) is
either empty or infinite.

2C3.1 Lemma Let P be closed. Then

(i) PE>#Q Types(P) c Types(Q),
(ii) if P r'Q Q by a non-cancelling and non-duplicating reduction, then

Types (P) = Types(Q)-

Proof By 2C 1 and 2C2.

2C3.2 Note (Conversion-invariance) Examples 2C2.2-2C2.6 show that we do not
always have

M =# N Types(M) = Types(N).

Even worse, we shall see an example in 7A2.1 where M =p N but

Types(M) fl Types(N) = 0.

Thus Types(M) is very definitely not invariant under conversion.
From a theoretical point of view this seems unsatisfactory. In fact, continuing

the Church-versus-Curry discussion from 2A3, it must be admitted that conversion-
sensitivity of Types(M) is the main disadvantage of a Curry-style type system. In a
Church system the type of M does not change with conversion (because all terms are
typed, including /3-redexes, and this fact restricts the /3-reduction rule and prevents
type-changes). But when we move to a Curry-style system to get the extra expressive
power provided by its polymorphism, we do not get it for free, and the price we pay
is that Types(M) can change with conversion.

2D The typable terms 27

However, Chapter 4 will describe the effect of adding a new rule to TA,t to
overcome this defect, and it will give theoretical evidence to suggest that perhaps
the price is not so high after all.

In practice too the conversion-sensitivity of Types(M) has turned out to be a
very small problem. Indeed, if one views an assignment M: a-fr as saying that the
application of M to every term with type v is "safe" in some sense, then the most
important practical property of a type-system is the subject-reduction theorem, which
says that if M has type a--+T it will not lose this safety-feature during a reduction.
If Types(M) happens to increase as M is reduced this is not a drawback but simply
means that M is becoming safer. In particular, practical programming languages
like ML and its relatives operate very successfully without conversion-invariance.

2D The typable terms

The system TAx divides the A-terms in a natural way into two complementary
classes: those which can receive types, such as Axyz x(yz), and those which cannot,
such as The former may be regarded as "safe" in the sense that if a term has
a type we know there is a way of assigning types to all its components that avoids
mis-matches of types. The following is a precise definition of this class.

2D1 Definition A term M is called (TAI-) typable or stratified if there exist r and
r such that

r1-2M:T.

2D2 Lemma The class of all TA2-typable terms is closed under the following oper-
ations:

(i) taking subterms (i.e. all subterms of a typable term are typable);

(ii) /3rl-reduction;

(iii) non-cancelling and non-duplicating /3-expansion;

(iv) A-abstraction (i.e. if M is typable so is Ax-M).

Proof (i) by 2B2. (ii) by 2C1. (iii) by 2C2. (iv) by rule (-+I).

2D3 Theorem The class of all TA2-typable terms is decidable; that is, there is an
algorithm which decides whether a given term is typable in TA1.

Proof The principal-type algorithm (3E1) will be a suitable decision-procedure.

2D4 Remark (Normalization) A property that nearly every type-theory in the
literature possesses is the weak normalization (WN) property, which says that every
typable term can be reduced to a normal form. Many type-theories also have the
strong normalization (SN) property, which says that all reductions of a typable term

28 2 Assigning types to terms

are finite. Both WN and SN can be regarded as safety-features of the type-theory
in question: if reductions are viewed as imitating the process of computing values,
WN says that a computation can always be continued to a result if we wish and
SN says that all computations terminate.

The next theorems state precisely the position for TA2.

2D5 Weak Normalization (WN) Theorem (Turing 1942, Curry and Feys 1958, etc.)
Every TA2-typable term has both a f3-nf and a /3n-nf.

Proof See 5C1 and 5C1.1 for a proof (from Turing 1942), and 5C1.2 for historical
notes.

2D5.1 Example By 2D5 the fixed-point combinator Y in lA10.1 is not typable in
TA2; because by 1B9.1, Y has no f-nf.

2D6 Strong Normalization (SN) Theorem (Sanchis 1967, Diller 1968, etc.) if M is
a TA2-typable term, every f3rl-reduction that starts at M is finite.

Proof There are many proofs in the literature besides those of Sanchis and Diller;
for example HS 86 Appendix 2 contains an accessible one for /3 in Thm. A2.3 and
one for /3ri in Thm. A2.4. For references to some others see 5C2.2.

2D6.1 Note Since SN implies WN there is no real need for a separate treatment of
WN. But the Turing proof of WN in 5C1 is both simpler and older than any proof
of SN. Further, most applications of normalization turn out to be of WN rather
than SN. The following are a couple of such applications.

2D7 Theorem There is a decision-procedure for /3-equality of TA2-typable terms;
an algorithm which, given any typable terms P and Q, will decide whether P
Similarly for & -equality.

i.e.

Q.

Proof Reduce P and Q to their fl-nf's (which exist by WN, and can be found using
leftmost reductions, by 1B9) and see whether they differ.

2D7.1 Note The complexity of the above decision-procedure can be measured in
terms of the Grzegorczyk hierarchy 6°, 6,1, 62, ... of sets of primitive recursive
functions (Grzegorczyk 1953 p.29): in fact Statman 1979b pp. 73-75 points out that
the procedure can be programmed to operate on a Turing machine in 64 time but
no decision-procedure for /3-equality of typable terms can be made to operate in 63
time. (The members of 63 are known as elementary functions.)

2D8 Theorem Every BCK2-term (as defined in I D2) is typable.

Proof Hindley 1989 Thm. 4.1, depending on WN.

2D The typable terms 29

2D8.1 Note The BCKA-terms are terms without multiple occurrences of variables
(except possibly for binding occurrences), so the above theorem connects untypabil-
ity with multiple occurrences of variables. On the other hand not every term with
multiple occurrences is untypable; consider S Axyzxz(yz) in 2A8.7(iii) for example.

